
Dynamic Working Memory in Recurrent

Neural Networks

Alexander Atanasov

Research Advisor: John Murray

Physics 471

Fall Term, 2016

Abstract

Recurrent neural networks (RNNs) are physically-motivated models of biological neu-
ronal circuits that can perform elementary computations. The relationship between
the structure of a network’s connectivity and its resulting dynamics is difficult to deter-
mine in all but the simplest of cases. In the past, we have studied the dynamics arising
from RNNs that are trained to perform simple discriminatory tasks with one input
neuron feeding in information. Generalizing this to discrimination of multiple input
neurons requires increasing computational power and flexibility in the way the models
are formulated. We present a new package, KerasCog for modeling biological neural
networks that allows for increased computational speed, parallelization compatibility,
and ease of use for a general audience of researchers in computational neuroscience.
We present two examples of networks built using KerasCog that discriminate based on
input.

Contents

1 Introduction to Neural Networks 1
1.1 Feedforward and Recurrent Networks 1
1.2 Training Neural Networks: Backpropagation and SGD 3
1.3 Adaptive Moment Estimation: “Adam” 5

2 The KerasCog Package 6
2.1 Introduction . 6
2.2 Enforcing Biological Constraints in Keras RNNs 7

3 Discrimination of Inputs 8
3.1 The FlipFlop Network . 8
3.2 Results of Training Times . 10

4 Future Steps 11

ii

1 Introduction to Neural Networks

1.1 Feedforward and Recurrent Networks

We begin with an exposition to the field of ANNs, adopted from the previous semester’s
final review. The study of artificial neural networks (ANNs) has existed already for
several decades and finds applications in fields ranging from image detection to natural
language processing. Beyond these applications, ANNs provide a looking glass into the
ways that neuronal systems in the brain can perform elementary computations.

Within the machine learning community, neural networks are built by feeding data
into an initial layer of input neurons, connected to a series of “hidden” layers before
returning an output from the output layer [1], as below.

Figure 1.1: A Feedforward Neural Network

These are multilayer systems, with several levels of neuron families and no connec-
tivity among the same level, but very high connectivity between successive levels. The
inputs of neurons at level i depend only on the inputs for the neurons at level i − 1,
and their firing will only effect neurons at level i+ 1.

A neuron will have a firing rate ri depending on whether it is receiving enough
current to pass some threshold. This current comes from all the neurons going into it.
That is, for each neuron i, a neuron j going into i contributes an amount of current
Wijrj, where Wij is the weight of connectivity between i and j. This can be negative,
in which case we would have that neuron j inhibits neuron i. The firing rate of neuron
i is then some positive function of the neuron’s current ri = [xi]+ (e.g. a sigmoid or a
delayed linear function with some threshold) [2].

There is some output function z∗` for each output neuron i, that the neural network
must be trained to produce. That is, the goal is to minimize L = ||z∗` − z`||. How do

1

we minimize this error? We see how we’d have to adjust the current immediately going
in to the output layer by adjusting those weights so that the error function decreases
the most rapidly. But the current in each penultimate node is dependent on the layer
before that, so we must see how to adjust those weights as well in order to minimize
the total error. The total error change is then expressed (through the chain rule) in
terms of all the weight changes from the final to the initial layer. This is the principle
of backpropagation.

Once we have the changes in error expressed in terms of the changes of weights, we
find the direction which minimizes the error the fastest. This is the method of steepest
gradient descent (which will be explained more deeply in the following sections).

The human brain rarely involves networks like the one above [2]. Firstly, there
are no dynamic elements to these networks. The inputs uk are fixed, independent of
time, and so are the outputs z`. Biologically, we expect both input and output to be
time-varying currents uk(t) and z`(t)

The networks above are called “feedforward”, but they are not recurrent. The
picture below is a section of a neuronal network from a mouse brain [2].

Figure 1.2: A Recurrent Neural Network

Note that in this picture, the networks do not fit together in separable layers but
instead seem to bunch up together in a highly connected set of nodes. Moreover, the
graph that represents the connectivity of such a neural network may involve multiple
cycles, so that expressing it in terms of disjoint layers is impossible. Recurrent neural
networks (RNNs) consist of connectivity among all neurons in the network without
separating the neuronal connections into distinct sectors as in the first picture.

In certain parts of the brain, there can be a mix of feedforward networks and RNNs,
where the network consists of sparsely connected sectors of RNNs, each RNN feeding
forward into the next. There is biological evidence for this phenomenon [2], but in this
paper we will focus on only RNNs that are densely connected.

A reasonable model for neural networks is given in terms of relating the current in

2

a given recurrent neuron xi to a linear inhomogeneous differential equation. This equa-
tion would represent exponential decay of activity were it not for the inhomogeneous
terms representing the inputs from the other spiking networks.

τ
dxi
dt

= −xi +
Nrec∑
j=1

W rec
ij rj +

Nin∑
k=1

W in
ikuk +

√
2τσ2ξi (1.1)

ri = [xi]+ (1.2)

z` =
N∑
i=1

W out
`i ri (1.3)

The term ui is the input while zi is the output. The last term, ξi is Gaussian noise,
which is both biologically and computationally significant. The output function z`(t)
is obtained from an output weight matrix W out

`i acting on the recurrent network.

1.2 Training Neural Networks: Backpropagation and

SGD

To train a neural network means to appropriately adjust the weight matricesW rec
ij ,W

in
ij ,W

out
ij

so that for the given input uk(t) we get an output z`(t) that is as close as possible to
the desired z∗` (t). Since firing rates recursively depend on previous neurons at past
time-steps [4], we will have to employ backpropagation as in the feedforward case.

This time it is different: a neuron’s own fired current at a given time t may end up
influencing it at a future time t′ [5]. This forms feedback loops for each individual neu-
ron. Regardless, to minimize the error function L(Wij), known also as the objective
function or the loss, with respect to the weights, we employ the method of stochastic
gradient descent. This method is a variation on the more simple method of gradient
descent: given a point in the weight space, calculate the gradient of the error function
(it points orthogonal to the level curves of the error) and move against the gradient
(so as to go in the direction of greatest decrease) [5].

More formally, we say that a network is defined by a set of parameters θi (in this
case the weights of the neuronal connections) and we want to minimize the objective
function:

L(θ) =
∑
t,`

[z`(t)− z∗` (t)]2. (1.4)

At each step in training, the parameters θi are adjusted from the previous step
by calculating the gradient ∇L with respect to total derivatives of each of the θi and
applying:

θi = θi−1 + δθi−1, δθi = −η d

dθi (L) (1.5)

3

this total derivative can be calculated accurately through back-propogation through
time1.

Figure 1.3: The Method of Gradient Descent in 2D

We continue this process iteratively to converge on a minimum. Note however
that this minimum may only be a local minimum and thus not be good enough to
sufficiently minimize the error. The stochastic element is meant to avoid this. By
adding an element of randomness, we are able to avoid long-term convergence to a
local but not global minimum.

Figure 1.4: The Method of Stochastic Gradient Descent in 2D

The idea is that if we are trapped in only a local minimum, with a better one
nearby, this randomness can “bump” us out, into the lower minimum.

1Note that these derivatives are not numerical, but rather rely on symbolic differentiation, pre-

implemented on the built-in functions of a given machine learning library

4

1.3 Adaptive Moment Estimation: “Adam”

The method of stochastic gradient descent can be greatly improved by using so-called
“adaptive” methods to predict, using past data, what direction we should change our
parameters in order to get maximal decrease in our objectie function.

SGD training has difficulty with “ravines”, which are places where there is much
higher gradient fluctuation along one dimension than in others [3]:

Figure 1.5: Illustration of the adaptive method, Adam, in red against the naive SGD

approach in black

By keeping track of the gradient mean and standard deviation in past timesteps,
the adaptive moment estimation method, Adam, makes an informed guess about the
path being traced through weight space that minimizes the loss. This is done by taking
an exponentially weighted sum of the past gradient means and gradient variances.

Specifically, given a calculated gradient gt at time t the estimate for the first moment
(mean), m and second moment (mean of the square), ν for the correct direction to move
at timestep t is taken as

mt = β1mt−1 + (1− β1)gt
νt = β2νt−1 + (1− β2)g2t

(1.6)

and β1, β2 are taken as parameters, less than unity, that determine the decay rate of
the past gradients taken into account in these weighted averages. By keeping track of
this information, we can increase the training rate, often orders of magnitude [3].

5

2 The KerasCog Package

2.1 Introduction

Over the spring semester, a great deal of the computational work done was through the
pycog package developed by Francis Song et al. [5]. This package employed methods
of SGD and the Theano machine learning library to build biologically-realistic neural
networks and train them to produce results seen in data from cognitive tasks.

Multi-input discrimination tasks are particularly difficult to train networks on, and
require an increase in computational power given either by a more powerful descent
method (such as Adam over SGD) or access to parallelization (i.e. using graphic-
processing units to speed up matrix manipulations in training). Unfortunately, pycog
has not implemented any more advanced method of training past SGD, and is unlikely
to be updated in the future. Moreover, the Theano library’s function used in back-
propagation by pycog, known as the scan, meant to back-propagate for multiple steps
backwards in time, is not GPU-compatible.

Rather than modifying pycog and rewriting the descent method to be compatible
with GPUs and Adam, we chose to work from the bottom up and implement a package
of our own using the Keras machine-learning package.

Keras is a “wrapper” package, meaning that it is a higher-level package that already
has implemented various networks, interfaces, and training methods for machine learn-
ing purposes. Keras uses either Theano or Google’s TensorFlow to perform the matrix
manipulations involved in training networks, and can swap out one for the other easily.
Switching over to such a package, rather than starting from scratch using Theano or
Tensorflow has several advantages:

1. We can directly appeal to Keras’ RNN classes without having to build them from
scratch,

2. We can use a much wider variety of descent methods and criteria when training,
including Adam.

3. All methods in Keras are tested to be GPU-compatible.

4. Using Keras greatly decreases the amount of code necessary to build a research
package for studying cognitive processes, as most of the low-level work is imple-
mented within the package and done in the “background”

The latest release of KerasCog can be found and downloaded at

https://github.com/ABAtanasov/KerasCog.

6

2.2 Enforcing Biological Constraints in Keras RNNs

The RNN class in Keras involves a time-dependent input fed into a dense recurrent
network to produce a time dependent output. The equations of motion for a single
neuron are

x(t+ ∆t) =
Nrec∑
j

Wijrj(t) +

Nin∑
k=1

W in
ik uk(t) (2.1)

moreover the weights Wij for neuron j are not constrained to all have the same sign
in general, unlike in biology where Dale’s Law states that a neuron must be either
inhibitory (negative weights) or excitatory (positive weights) with a roughly 80/20
ratio of excitatory to inhibitory neurons.

This type of network is more optimal for machine learning than the biologically-
motivated network described previously. Our modifications to the Keras RNN class
involved four changes:

1. Input Noise

2. Recurrent Noise

3. Neuron Decay in Time

4. Dale’s Law

The input noise was the easiest to implement, by directly adding Gaussian noise
to the input neurons’ signal ui(t) as it was fed in to the network. Recurrent noise
is implemented by connecting a “gaussian noise network” to be fed in to the RNN
together with the input, supplying the randomness at each timestep.

The neuron decay was more challenging, and required us to build a new LeakyRe-
current class, deriving all the methods from the Keras Recurrent class, but changing
the step in time so as to implement the same equations of motion as in Equations (1.1)-
(1.3). The timestep function is a particularly sensitive one to build, as it will be sym-
bolically differentiated by Keras’ backpropagation methods. For this reason, we could
not have implemented noise by naively adding it at each time-step, because such a
function has no symbolic derivative.

Lastly, Dale’s law was implemented by adding a non-trainable matrix

D = diag[(1, 1, . . . , 1,−1, . . . ,−1)] (2.2)

with an 80/20 ratio of excitatory to inhibitory neurons. The equations of motion
then replace W rec

ij by D|W rec
ij | so that the effective weights are consistently positive or

negative for each recurrent neuron.

7

3 Discrimination of Inputs

Our long-term goal is to use KerasCog to train neural networks for tasks of input
discrimination, in order to perform analysis to determine how working memory is
stored in these dynamical systems.

We can make the pulses be different frequency, or we can make them come from
different neurons. These two tasks, while seemingly simple in structure, lead to widely
different dynamics and training behaviour. In the past semester, we heavily studied
the structure of frequency discrimination, but were unable to train a very large variety
of networks to perform input discrimination-based memory tasks. Here, we use the
increased computational power of KerasCog to train networks to perform such input
discrimination. The first example we give is the FlipFlop task:

3.1 The FlipFlop Network

We have two input neurons A and B, one output neuron C, and a time series consisting
of n “turns”. At each turn, we have a firing period followed by a “quiet” period. During
the firing period one of the two input neurons will fire. If neuron A has fired, the output
neuron will stay close to zero, with no firing activity. If neuron B fires, the output
neuron fires with activity close to 1. Below is an implementation of this task using the
Keras built-in RNN

Figure 3.1: A Keras neural network

8

Upon implementing leak in this built-in network, we can see it manifest itself in
the output neuron’s activity.

Figure 3.2: Keras neural network with Dale’s law, leak, and noise implemented

The above figure is generated from the KerasCog class of LeakRecurrent neural
networks.

9

3.2 Results of Training Times

The amount of time required to train a network to perform the FlipFlop task heavily
depended on the biological constraints enforced. With few biological constraints en-
forced (only leak and random noise on the input), the networks trained successfully in
a matter of seconds, much in part due to the very fast speedup given by Adam.

Upon enforcing Dale’s law, however, the training time became significantly longer,
requiring much more time for the network to minimize its loss function. Moreover,
there appears to be an asymptote in loss past which it would require a significant
of time to reduce the error. This issue is indicative of Dale’s law being a significant
constraint on the network that makes it more difficult to find solution networks to a
given input discrimination task.

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

0.25

0.30

������ �� ����������

�
�
�
�
�
�
�
�

Figure 3.3: Training times for RNNs with Dale’s law and recurrent noise enforced

(yellow) vs. without (blue)

10

4 Future Steps

The next steps will involve using Keras’ increased computational power together with
the Yale HPC clusters to train networks to build longer term memory for input dis-
crimination tasks. We have gotten around the issue of GPU-compatibility encountered
last semester.

The remainder of this research will then center on writing up visualization tools for
Keras from which the dynamics of the RNNs can be understood. Such visualization
tools will range from simply seeing each neuron’s activity over the time of the task, and
seeing the connectivity matrix of a given network, to more advanced PCA-inspired and
spectral methods. Among these methods will be looking at the eigenvalue spectrum
of the connectivity matrix, and studying both dynamic and steady-state behaviour in
the networks based on the interpretation of these eigenvalues.

The FlipFlop task in particular, lends itself to be analyzed in terms of attractor
states of the network output. We can view the network as a point moving through the
phase space of activity states, that is influenced by the external input to move into
one of two “troughs” or attractor states. Such analysis, combined with the ability to
reduce the high-dimensional system to a simple 2-D figure could prove to be a powerful
and unique visualization tool in KerasCog for understanding dynamics.

11

References

[1] Juan C. Cuevas-Tello, Manuel Valenzuela-Rendón, and Juan Arturo Nolazco-
Flores. A tutorial on deep neural networks for intelligent systems. CoRR,
abs/1603.07249, 2016.

[2] Peter Dayan and L. F. Abbott. Theoretical Neuroscience: Computational and
Mathematical Modeling of Neural Systems. The MIT Press, 2005.

[3] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014.

[4] Jing Li, Ji-hang Cheng, Jing-yuan Shi, and Fei Huang. Advances in Computer
Science and Information Engineering: Volume 2, chapter Brief Introduction of
Back Propagation (BP) Neural Network Algorithm and Its Improvement, pages
553–558. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[5] H. Francis Song, Guangyu R. Yang, and Xiao-Jing Wang. Training excitatory-
inhibitory recurrent neural networks for cognitive tasks: A simple and flexible
framework. PLoS Comput Biol, 12(2):1–30, 02 2016.

12

